
VILLAS ØR

DB201LSA THRU DB207LSA

2.0A Surface Mount Bridge Rectifiers - 50V~1000V

PRIMARY CHARACTERISTICS				
V _{RRM} 50V~1000\				
I _(AV)	2.0A			
VF	1.1V			
TJ,Max	150 ℃			

MECHANICAL DATA

- Case : Molded plastic, DB-LS
- Polarity : Shown above

activ

- Terminals :Plated terminals, solderable per MIL-STD-750,Method 2026
- Epoxy : UL94-V0 rated flame retardant

F	E/	١٢	U	R	E\$	S	

- High surge overload rating of 50 Amperes peak
- Ideal for printed circuit board
- Glass passivated chip junction
- Moisture Sensitivity Level 1

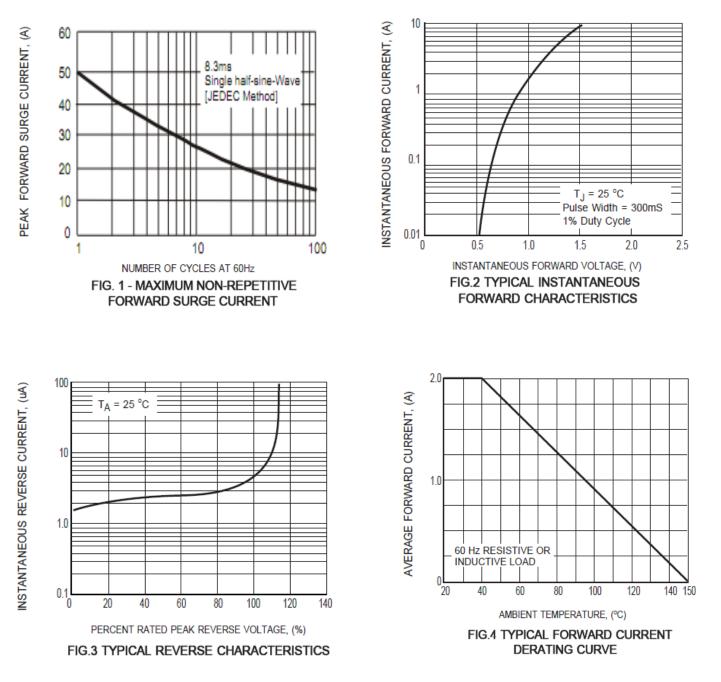
Maximum Ratings and Electrical Characteristics

Ratings at 25 $^\circ C$ ambient temperature unless otherwise specified. Single phase, half wave, $60H_Z$, resistive or inductive load. For capacitive load, derate current by 20%.

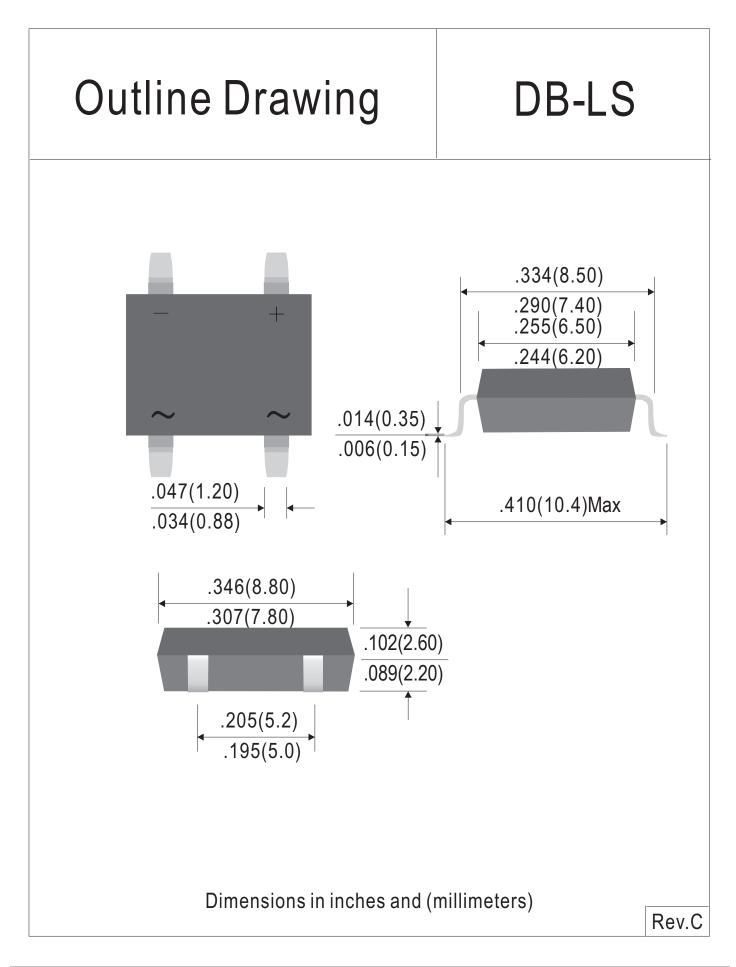
	Symbols	F D423NUC	F D424NUC	F D425NUC	FD426NUC	FD427NUC	FD428NUC	FD429NUC	Units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	V _{RMS}	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	V _{DC}	50	100	200	400	600	800	1000	Volts
Maximum Average Forward	I _(AV)	(AV) 2.0							Amp
Rectified Current at T_A =40°C (Note 2)	(AV)								mp
Peak Forward Surge Current,									
8.3ms single half-sine-wave	I _{FSM} 50							Amp	
superimposed on rated load (JEDEC method)									
Maximum Forward Voltage	V_{F}	V _F 1.1							Volts
at2.0A DC and 25 °C	• F	1.1							voits
Maximum Reverse Current at T _A =25°C	I _R				5.0				
at Rated DC Blocking Voltage T _A =125°C	IR	500							uAmp
Typical Junction Capacitance (Note 1)	CJ	25						pF	
Typical Thermal Resistance (Note 2)	$R_{\theta JA}$	40					°C/W		
Typical Thermal Resistance (Note 2)	$\mathbf{R}_{\theta \mathbf{JL}}$	15					°C/W		
Operating and Storage Temperature Range	T _J , Tstg				-55 to +15	50			Ĉ

NOTES:

1- Measured at 1 $\ensuremath{\text{MH}_{Z}}\xspace$ and applied reverse voltage of 4.0 VDC.


2- Thermal resistance from junction to ambient and from junction to lead mounted on P.C.B. with 0.5 x 0.5" (13 x 13mm) copper pads

DB201LSA THRU DB207LSA


2.0A Surface Mount Bridge Rectifiers - 50V~1000V

RATINGS AND CHARACTERISTIC CURVES

2.0A Surface Mount Bridge Rectifiers - 50V~1000V

2.0A Surface Mount Bridge Rectifiers - 50V~1000V

Ordering Information:

Device PN	Marking ⁽⁴⁾	Packing
Part Number -T ⁽¹⁾ G ⁽²⁾ -WS ⁽³⁾	Page.1 Table	Tape&Reel: 1 Kpcs/Reel

Note: (1) Packing code, Tape & Reel Packing

- (2) Packing code Suffix"H" for halogen free product All materials and products supplied comply with the U.S. Toxic Substances Control Act statement, PBT Chemicals
- (3) Willas brand abbreviation, Label Type does not display
- (4) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device

Disclaimer

WILLAS reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. WILLAS or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on WILLAS data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. WILLAS does not assume any liability arising out of the application or use of any product or circuit.

This is the preliminary specification. WILLAS products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of WILLAS. Customers using or selling WILLAS components for use in such applications do so at their own risk and shall agree to fully indemnify WILLAS Inc and its subsidiaries harmless against all claims, damages and expenditures.